Numerical methods for computing ground states and dynamics of nonlinear relativistic Hartree equation for boson stars
نویسندگان
چکیده
Efficient and accurate numerical methods are presented for computing ground states and dynamics of the three-dimensional (3D) nonlinear relativistic Hartree equation both without and with an external potential. This equation was derived recently for describing the mean field dynamics of boson stars. In its numerics, due to the appearance of pseudodifferential operator which is defined in phase space via symbol, spectral method is more suitable for the discretization in space than other numerical methods such as finite difference method, etc. For computing ground states, a backward Euler sine pseudospectral (BESP) method is proposed based on a gradient flow with discrete normalization; and respectively, for computing dynamics, a time-splitting sine pseudospectral (TSSP) method is presented based on a splitting technique to decouple the nonlinearity. Both BESP and TSSP are efficient in computation via discrete sine transform, and are of spectral accuracy in spatial discretization. TSSP is of second-order accuracy in temporal discretization and conserves the normalization in discretized level. In addition, when the external potential and initial data for dynamics are spherically symmetric, the original 3D problem collapses to a quasi1D problem, for which both BESP and TSSP methods are extended successfully with a proper change of variables. Finally, extensive numerical results are reported to demonstrate the spectral accuracy of the methods and to show very interesting and complicated phenomena in the mean field dynamics of boson stars. 2011 Elsevier Inc. All rights reserved.
منابع مشابه
Blow-Up for Nonlinear Wave Equations describing Boson Stars
We consider the nonlinear wave equation i∂tu = √ −∆+m2u− (|x| ∗ |u|)u on R modelling the dynamics of (pseudo-relativistic) boson stars. For spherically symmetric initial data, u0(x) ∈ C∞ c (R), with negative energy, we prove blow-up of u(t, x) inH-norm within a finite time. Physically, this phenomenon describes the onset of “gravitational collapse” of a boson star. We also study blow-up in exte...
متن کاملMean Field Dynamics of Boson Stars
We consider a quantum mechanical system of N bosons with relativistic dispersion interacting through a mean field Coulomb potential (attractive or repulsive). We choose the initial wave function to describe a condensate, where the N bosons are all in the same one-particle state. Starting from the N -body Schrödinger equation, we prove that, in the limit N → ∞, the time evolution of the one-part...
متن کاملEffective Dynamics for Boson Stars
We study solutions close to solitary waves of the pseudo-relativistic Hartree equation describing boson stars under the influence of an external gravitational field. In particular, we analyze the long-time effective dynamics of such solutions. In essence, we establish a (long-time) stability result for solutions describing boson stars that move under the influence of an external gravitational f...
متن کاملWell-Posedness for Semi-Relativistic Hartree Equations of Critical Type
We prove local and global well-posedness for semi-relativistic, nonlinear Schrödinger equations i∂tu = √ −∆+ mu+F (u) with initial data in H(R), s ≥ 1/2. Here F (u) is a critical Hartree nonlinearity that corresponds to Coulomb or Yukawa type self-interactions. For focusing F (u), which arise in the quantum theory of boson stars, we derive a sufficient condition for global-in-time existence in ...
متن کاملA Numerical Study of Solitonic Boson Stars in General Relativity
In the wake of the recent detection of gravitational wave signal GW150914, we investigate whether GW150914 could have been produced by something other than a binary black hole system. Our proposed candidate is a binary system of solitonic boson stars. The choice of solitonic boson stars is due mainly to the structural properties of their ground states, as solitonic boson stars are capable of fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011